1 (a (i) diffraction B1
(ii) waves travel slow(er)/water is shallow(er) B1
(iii) angular spread of wavefronts increases o.w.t.t.e. OR amplitude of waves is smaller B1
(b) (i) oscillation/up and down motion (of rope) is at right angles to the direction of the wave OR motion of rope/particles is at right angles to the direction of the wave B1
(ii) $\lambda=2.4 / 2=1.2 \mathrm{~m}$ C1
$v=f \lambda$ in any form OR $(f=) v / \lambda$ OR 3.2/1.2 C1
2.7 Hz A1
OR

$$
t=2.4 / 3.2
$$

$$
f=2 \times 3.2 / 2.4
$$

2.7 Hz2 (a light in airBOX $53 \times 10^{8} \mathrm{~m} / \mathrm{s}$B
sound in air BOX $2300 \mathrm{~m} / \mathrm{s}$ B
sound in water BOX $3 \quad 1500 \mathrm{~m} / \mathrm{s}$ B
(b) distance $=$ speed \times time in any form NOT speed $=2 d / t$ C1
$t_{\mathrm{air}}=120 \div$ value for speed of sound in air C1
$t_{\text {rail }}(=120 / 5000)=0.024 \mathrm{~s}$ C
(time difference $=$) candidate's $t_{\text {air }}$ - candidate's $t_{\text {rail }}$ correctly evaluated (expect $0.400-0.024=0.376 \mathrm{~s}$)
[3][4]
3 (a (Molecule) moves up and down / rises and fallsOR oscillates perpendicular to direction of waveOR describes a circleB1
(b) (i) At least 3 circular arcs, angular spread greater than 90° (symmetrically above and below slit B1
Centre of arcs at centre of slit and with same spacing (by eye) as incident waves B1
(ii) Diffraction B1
(c) $v=f \times \lambda$ OR $12=f \times 1.4$ OR $f=v / \lambda$ OR $f=12 / 1.4$ C1
$f=8.57 \mathrm{~Hz} /$ per s / waves or vibrations per s A1
at least 2 s.f.
[Total: 6]
$4 \quad$ (a) $C D$ B1
(ii) any 3 points from

- wavefront changes direction/refracted OR wavefront bends B1
- in Q distances travelled (by waves) shorter/wavelength less B1
- wave spreads in region Q from B B1- all points on wavefront $A B$ move to (corresponding) points on $C D$- in same time that/while end A of wavefront $A B$ move to C and end Bmoves to D
(b) regions P and Q same depth/regions P and Q (now) one medium B1
same wavelength/wavefronts travel same speed/distance in each region OR no refraction/change of direction OR no bending of wavesB1 [2]

(a) idea of fine ray/beam shone into (glass) block / pins appropriately placed shown in diagram or describedB1
angles $i \& r$ or C measured OR correct $i \& r$ or C marked on diagram B1
$\sin i / \sin r$ OR $\sin r / \sin i$ OR $1 / \sin C$ OR $\sin C$ B1
$n=$ speed in air/speed in glass OR $c / v=\sin i / \sin r$ OR $n=1 / \sin C$ OR $c / v=1 / \sin C$ B1
(b) (i) $v=f \lambda$ OR $240 / 1.9 \times 10^{5}$ OR $T=d / s$ AND $f=1 / T$ B10.00126 Hz OR 0.0013 Hz NOT 0.0012 Hzignore more than 3 s.f. accept s ${ }^{1}$ A1
(ii) distance $=$ speed \times time in any form accept $s=2 d / t$ C1
(time for tremor =) 240 (s) or 4 mins also gives first C1 C1
(time for tsunami =) 2500 (s) or 41 mins 40 s also gives first C1 C1
(warning time =) $2260(\mathrm{~s})$ or 37 mins 40 s A1
6 (a (i) shake end of rope (e.g. from side to side / up and down) B1
(ii) distance from crest to crest / trough to trough / any 2 adjacent points in phase, labelled λ B1
distance from central horizontal line to peak or trough, labelled A B1
(iii) increase rate of shaking end of rope (to increase frequency) / shake faster / move more quickly B1
(b) in shallow water wavelength is smaller OR waves / lines are closer together B1
frequency is constant B1
(slower because) speed $=$ frequency \times wavelength B1
OR
lines / waves closer together in shallow water / waves in shallow water lag behindB1
smaller distance travelled in same time by waves in shallow water o.w.t.t.e. B1
(slower because) speed = distance / time B1

